Differential Graded Algebras of Legendrian Knots

Sarah Blackwell

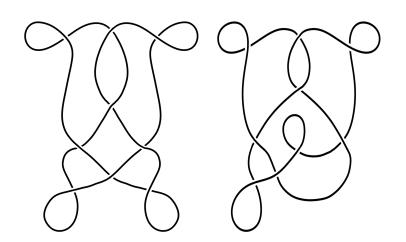
University of Georgia Mock AMS

July 26, 2018

Goal: an invariant of Legendrian knots that can distinguish Legendrian knots with the same "classical invariants"

Goal: an invariant of Legendrian knots that can distinguish Legendrian knots with the same "classical invariants"

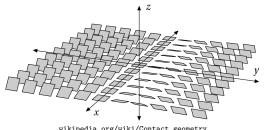
Chekanov (1997): invariant using DGAs



Contact structure on \mathbb{R}^3 : completely non-integrable 2-plane field

- **Contact structure on** \mathbb{R}^3 : completely non-integrable 2-plane field
- Standard contact structure on \mathbb{R}^3 : the 2-plane distribution ξ defined locally as the kernel of the 1-form $\alpha = dz ydx$

- **Contact structure on** \mathbb{R}^3 : completely non-integrable 2-plane field
- **Standard contact structure on** \mathbb{R}^3 : the 2-plane distribution ξ defined locally as the kernel of the 1-form $\alpha = dz - ydx$



Knot: a smooth embedding of S^1 into \mathbb{R}^3

- **Knot**: a smooth embedding of S^1 into \mathbb{R}^3
- **Legendrian knot**: a smooth knot whose tangent vectors are contained in the contact planes of ξ

- **Knot**: a smooth embedding of S^1 into \mathbb{R}^3
- Legendrian knot: a smooth knot whose tangent vectors are contained in the contact planes of ξ

services.math.duke.edu/~ng/knotgallery.html

- **Knot**: a smooth embedding of S^1 into \mathbb{R}^3
- Legendrian knot: a smooth knot whose tangent vectors are contained in the contact planes of ξ

services.math.duke.edu/~ng/knotgallery.html

 Two Legendrian knots are Legendrian isotopic if they can be connected by a smooth 1-parameter family of Legendrian knots

■ Lagrangian projection:

$$\pi: \mathbb{R}^3 \to \mathbb{R}^2$$
$$(x, y, z) \mapsto (x, y)$$

Lagrangian projection:

$$\pi: \mathbb{R}^3 \to \mathbb{R}^2$$

$$(x, y, z) \mapsto (x, y)$$

Lagrangian projection:

$$\pi: \mathbb{R}^3 \to \mathbb{R}^2$$
 $(x, y, z) \mapsto (x, y)$

■ Lagrangian projection:

$$\pi: \mathbb{R}^3 \to \mathbb{R}^2$$

$$(x, y, z) \mapsto (x, y)$$

■ Lagrangian projection:

$$\pi: \mathbb{R}^3 \to \mathbb{R}^2$$
 $(x, y, z) \mapsto (x, y)$

Lagrangian projection:

$$\pi: \mathbb{R}^3 \to \mathbb{R}^2$$
$$(x, y, z) \mapsto (x, y)$$

• A Legendrian knot L is π -generic if all self-intersections of $\pi(L)$ are transverse double points

■ The diagram of a π -generic Legendrian knot \underline{L} is $\pi(\underline{L})$

Classical Invariants

Classical Invariants

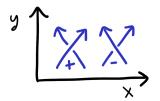
Smooth isotopy type

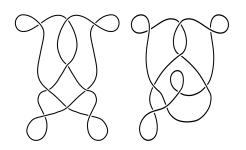
Classical Invariants

- 1 Smooth isotopy type
- **2** Maslov number m(L): twice the rotation number of $\pi(L)$ (choose orientation)

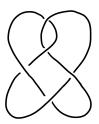
Classical Invariants

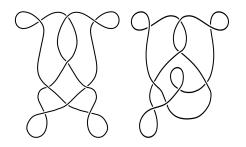
- 1 Smooth isotopy type
- 2 Maslov number m(L): twice the rotation number of $\pi(L)$ (choose orientation)
- **Thurston-Bennequin number** $\beta(L)$: signed count of the crossings of $\pi(L)$ (doesn't depend on orientation)



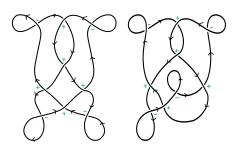


Smooth isotopy type $= 5_2$





Maslov number m(L) = twice the rotation number of $\pi(L) = 0$



Thurston-Bennequin number $\beta(L)$ = signed count of the crossings of $\pi(L)$ = 1

Differential Graded Algebra (DGA)

Differential Graded Algebra (DGA)

• (Associative \mathbb{Z}_2 -) Algebra: a ring A with identity together with a ring homomorphism $f: \mathbb{Z}_2 \to A$ mapping $\mathbb{1}_{\mathbb{Z}_2}$ to $\mathbb{1}_A$

Differential Graded Algebra (DGA)

- (Associative \mathbb{Z}_2 -) Algebra: a ring A with identity together with a ring homomorphism $f: \mathbb{Z}_2 \to A$ mapping $\mathbb{1}_{\mathbb{Z}_2}$ to $\mathbb{1}_A$
- (Γ -) Graded: an algebra A that is the direct sum of additive subgroups $A=A_0\oplus A_1\oplus \cdots$ such that $A_iA_j\subseteq A_{i+j}$, where $i,j\in \Gamma$

Differential Graded Algebra (DGA)

- (Associative \mathbb{Z}_2 -) Algebra: a ring A with identity together with a ring homomorphism $f: \mathbb{Z}_2 \to A$ mapping $\mathbb{1}_{\mathbb{Z}_2}$ to $\mathbb{1}_A$
- (Γ -) Graded: an algebra A that is the direct sum of additive subgroups $A = A_0 \oplus A_1 \oplus \cdots$ such that $A_i A_j \subseteq A_{i+j}$, where $i, j \in \Gamma$
- Differential: a graded linear map $\partial: A \to A$ of degree -1, such that $\partial(ab) = \partial(a)b + a\partial(b)$ for all $a, b \in A$, and $\partial^2 = 0$

Differential Graded Algebra (DGA)

- (Associative \mathbb{Z}_2 -) Algebra: a ring A with identity together with a ring homomorphism $f: \mathbb{Z}_2 \to A$ mapping $\mathbb{1}_{\mathbb{Z}_2}$ to $\mathbb{1}_A$
- (Γ -) Graded: an algebra A that is the direct sum of additive subgroups $A = A_0 \oplus A_1 \oplus \cdots$ such that $A_i A_j \subseteq A_{i+j}$, where $i, j \in \Gamma$
- Differential: a graded linear map $\partial: A \to A$ of degree -1, such that $\partial(ab) = \partial(a)b + a\partial(b)$ for all $a, b \in A$, and $\partial^2 = 0$

 (A, ∂)

Semi-free DGA

Semi-free DGA

■ $T(a_1,...,a_n)=$ the free associative unital algebra over \mathbb{Z}_2 with generators $a_1,...,a_n$ $(n \ge 0)$

Semi-free DGA

- $T(a_1,...,a_n)=$ the free associative unital algebra over \mathbb{Z}_2 with generators $a_1,...,a_n$ $(n \ge 0)$
- AKA the algebra of non-commutative polynomials in variables a_1, \ldots, a_n and with coefficients in \mathbb{Z}_2

Semi-free DGA

- $T(a_1,...,a_n)=$ the free associative unital algebra over \mathbb{Z}_2 with generators $a_1,...,a_n$ $(n \ge 0)$
- AKA the algebra of non-commutative polynomials in variables a_1, \ldots, a_n and with coefficients in \mathbb{Z}_2
- Define deg(a_i) so that ($T(a_1, ..., a_n), \partial$) becomes a DGA \rightsquigarrow semi-free DGA

Associating a DGA to a Legendrian Knot

Let L be a π -generic Legendrian knot

Let L be a π -generic Legendrian knot

1. Graded Algebra

Let L be a π -generic Legendrian knot

- 1. Graded Algebra
- 2. Differential

1. Graded Algebra

1. Graded Algebra

■ $A = T(a_1, ..., a_n)$ where $\{a_1, ..., a_n\}$ is the set of crossings of the diagram $\pi(L)$

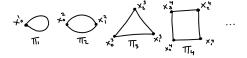
1. Graded Algebra

- $A = T(a_1, ..., a_n)$ where $\{a_1, ..., a_n\}$ is the set of crossings of the diagram $\pi(L)$
- ullet deg(a) $\in \mathbb{Z}/m(L)\mathbb{Z}$

2. Differential

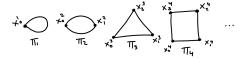
2. Differential

■ Π_k = (curved) convex k-gon with vertices x_0^k, \ldots, x_{k-1}^k numbered counter-clockwise



2. Differential

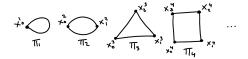
■ Π_k = (curved) convex k-gon with vertices x_0^k, \ldots, x_{k-1}^k numbered counter-clockwise



■ Consider smooth orientation-preserving immersions of Π_k into $\pi(L)$

2. Differential

■ Π_k = (curved) convex k-gon with vertices x_0^k, \ldots, x_{k-1}^k numbered counter-clockwise



- Consider smooth orientation-preserving immersions of Π_k into $\pi(L)$
- Furthermore: consider classes of immersions that fix vertices

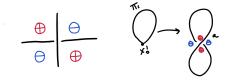
2. Differential

Admissible immersion: the vertex x_0^k is positive and all others are negative

$$\begin{array}{c|c} \oplus & \ominus \\ \hline \ominus & \oplus \\ \end{array}$$

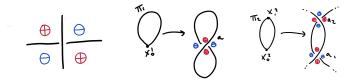
2. Differential

Admissible immersion: the vertex x_0^k is positive and all others are negative



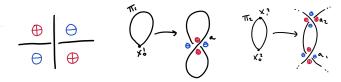
2. Differential

Admissible immersion: the vertex x_0^k is positive and all others are negative



2. Differential

Admissible immersion: the vertex x_0^k is positive and all others are negative



• $W_k(\pi(L), a) = \text{set of admissible immersions of } \Pi_k \text{ that send } x_0^k \text{ to } a$

2. Differential

• $W_k(\pi(L), a) = \text{set of admissible immersions of } \Pi_k \text{ that send } x_0^k \text{ to } a$

2. Differential

- $W_k(\pi(L), a) = \text{set of admissible immersions of } \Pi_k \text{ that send } x_0^k \text{ to } a$
- $\partial = \sum_{k>0} \partial_k$ where

$$\partial_k(a) = \sum_{f \in W_{k+1}(\pi(L), a)} f(x_1^{k+1}) \cdots f(x_k^{k+1})$$

2. Differential

- $W_k(\pi(L), a) = \text{set of admissible immersions of } \Pi_k \text{ that send } x_0^k \text{ to } a$
- $\partial = \sum_{k>0} \partial_k$ where

$$\partial_k(a) = \sum_{f \in W_{k+1}(\pi(L), a)} f(x_1^{k+1}) \cdots f(x_k^{k+1})$$

Extend ∂ to A by linearity and Leibniz rule

For any π -generic Legendrian knot L...

For any π -generic Legendrian knot L...

Lemma (Chekanov): there are only finitely many admissible immersions (so the definition of ∂ is sound)

For any π -generic Legendrian knot L...

Lemma (Chekanov): there are only finitely many admissible immersions (so the definition of ∂ is sound)

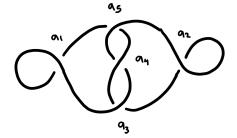
Lemma (Chekanov): $deg(\partial) = -1$

For any π -generic Legendrian knot L...

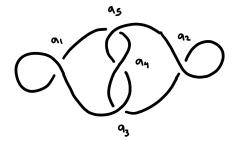
Lemma (Chekanov): there are only finitely many admissible immersions (so the definition of ∂ is sound)

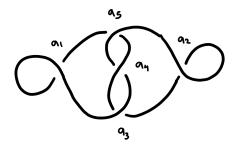
Lemma (Chekanov): $deg(\partial) = -1$

Theorem (Chekanov): $\partial^2 = 0$

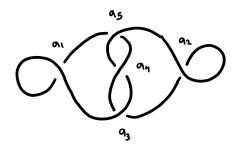


$$A = T(a_1, \ldots, a_5)$$



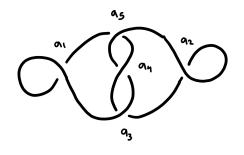


$$A = T(a_1, ..., a_5)$$



$$A = T(a_1, \ldots, a_5)$$

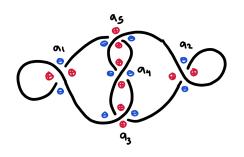
•
$$deg(a_1) = deg(a_2) = 1$$
,
 $deg(a_3) = deg(a_4) =$
 $deg(a_5) = 0$



$$A = T(a_1, \ldots, a_5)$$

•
$$deg(a_1) = deg(a_2) = 1$$
,
 $deg(a_3) = deg(a_4) =$
 $deg(a_5) = 0$

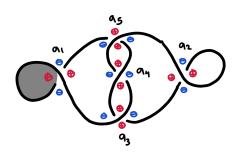
■
$$\partial(a_1) =$$



$$A = T(a_1, \ldots, a_5)$$

•
$$deg(a_1) = deg(a_2) = 1$$
,
 $deg(a_3) = deg(a_4) =$
 $deg(a_5) = 0$

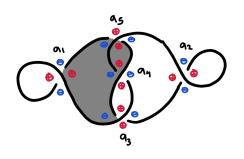
■
$$\partial(a_1) =$$



$$A = T(a_1, \ldots, a_5)$$

•
$$deg(a_1) = deg(a_2) = 1$$
,
 $deg(a_3) = deg(a_4) =$
 $deg(a_5) = 0$

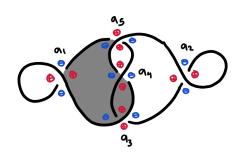
■
$$\partial(a_1) = 1$$



$$A = T(a_1, \ldots, a_5)$$

•
$$deg(a_1) = deg(a_2) = 1$$
,
 $deg(a_3) = deg(a_4) =$
 $deg(a_5) = 0$

$$\partial (a_1) = 1 + a_3$$

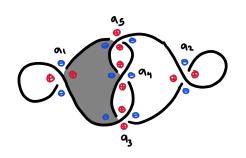


$$A = T(a_1, ..., a_5)$$

lacksquare $m(L)=0 \leadsto {
m graded} {
m \ by \ } \mathbb{Z}$

•
$$deg(a_1) = deg(a_2) = 1$$
,
 $deg(a_3) = deg(a_4) =$
 $deg(a_5) = 0$

$$\partial(a_1) = 1 + a_3 + a_5$$

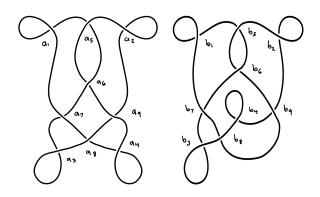


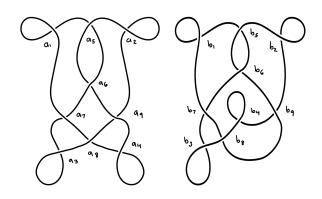
$$A = T(a_1, ..., a_5)$$

•
$$deg(a_1) = deg(a_2) = 1$$
,
 $deg(a_3) = deg(a_4) =$
 $deg(a_5) = 0$

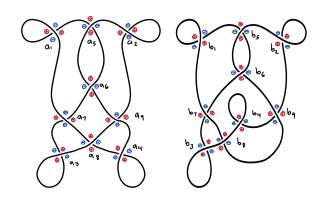
$$\partial(a_1) = 1 + a_3 + a_5 + a_3 a_4 a_5$$

Theorem (Chekanov): Let $(A, \partial), (A', \partial')$ be the DGAs of π -generic Legendrian knots L, L'. If L is Legendrian isotopic to L' then $(A, \partial), (A', \partial')$ have the same stable type.

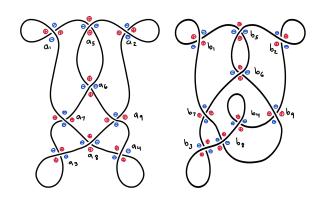




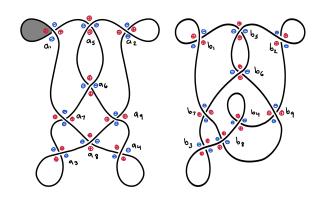
$$\partial(a_1) = ?$$



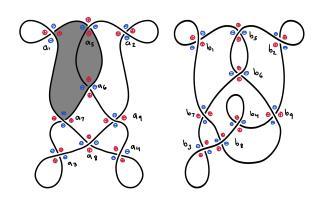
$$\partial(a_1) = ?$$



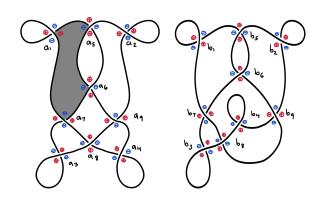
$$\partial(a_1)=1+a_7+a_7a_6a_5$$



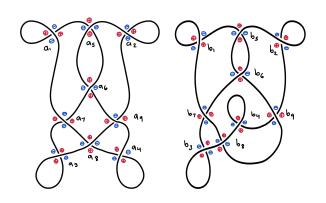
$$\partial(a_1) = 1 + a_7 + a_7 a_6 a_5$$



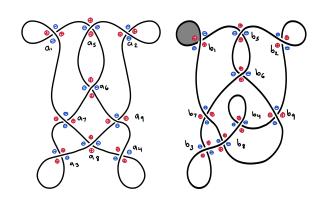
$$\partial(a_1)=1+a_7+a_7a_6a_5$$



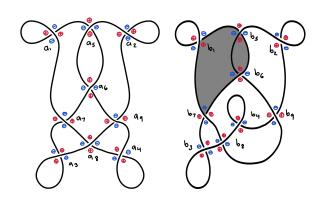
$$\partial(a_1) = 1 + a_7 + a_7 a_6 a_5$$



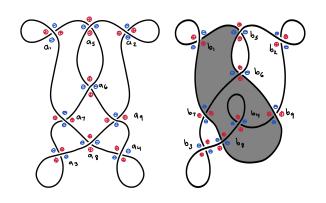
$$\partial(a_1) = 1 + a_7 + a_7 a_6 a_5$$
 $\partial(b_1) = 1 + b_7 + b_5 + b_7 b_6 b_5 + b_9 b_8 b_5$



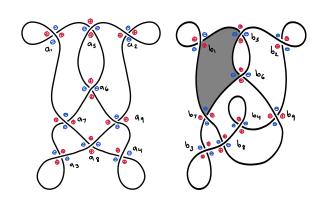
$$\partial(a_1) = 1 + a_7 + a_7 a_6 a_5$$
 $\partial(b_1) = 1 + b_7 + b_5 + b_7 b_6 b_5 + b_9 b_8 b_5$



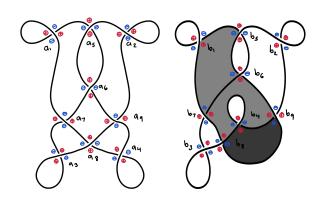
$$\partial(a_1) = 1 + a_7 + a_7 a_6 a_5$$
 $\partial(b_1) = 1 + b_7 + b_5 + b_7 b_6 b_5 + b_9 b_8 b_5$



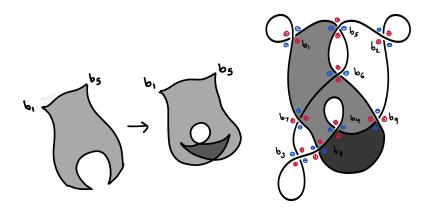
$$\partial(a_1) = 1 + a_7 + a_7 a_6 a_5$$
 $\partial(b_1) = 1 + b_7 + b_5 + b_7 b_6 b_5 + b_9 b_8 b_5$



$$\partial(a_1) = 1 + a_7 + a_7 a_6 a_5$$
 $\partial(b_1) = 1 + b_7 + b_5 + b_7 b_6 b_5 + b_9 b_8 b_5$



$$\partial(a_1) = 1 + a_7 + a_7 a_6 a_5$$
 $\partial(b_1) = 1 + b_7 + b_5 + b_7 b_6 b_5 + b_9 b_8 b_5$



$$\partial(a_1) = 1 + a_7 + a_7 a_6 a_5$$
 $\partial(b_1) = 1 + b_7 + b_5 + b_7 b_6 b_5 + b_9 b_8 b_5$

$$\partial(a_1) = 1 + a_7 + a_7 a_6 a_5$$

$$\partial(b_1) = 1 + b_7 + b_5 + b_7 b_6 b_5 + b_9 b_8 b_5$$

$$\partial(a_1) = 1 + a_7 + a_7 a_6 a_5$$
 $\partial(b_1) = 1 + b_7 + b_5 + b_7 b_6 b_5 + b_9 b_8 b_5$

How do we know these DGAs are different?

$$\partial(a_1) = 1 + a_7 + a_7 a_6 a_5$$

 $\partial(b_1) = 1 + b_7 + b_5 + b_7 b_6 b_5 + b_9 b_8 b_5$

How do we know these DGAs are different?

Need to use stable type invariants...

Thank you!