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o) SY [2020, Monolescu-Neithaleth ]
(ond many pactiol colwlations )

) §%x [JOQH,Sullivm-tha]
(oenecaligation in [RIV])
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W we woank 1o use is pers peckive

*) develop categorical framework

*) define covered skein |osogna invariant
*) 9lving thesfem 1: Juro pieces alorg commen bwvwlag

OuY Work:

*) 9\uirg thearoms 2+3: Selt-oluirg alone) bundany
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the sKein |asagna module of o pair (%,L) is
|asogna
SUD-Z it /

(X0 Py
]

(9) linear combinations of lasogna Billings ave set-fobe multiliasy in v;
(b) input ball relation:

D (D
=) SIS & =) SIS &

when X=6% S(Y,1)

Bl, (N ] ,(@z, Vs ~ f l) ') ’
(S, (8L, Balnd) ~ (S, (B5Lv) (etovers KhR(D
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modulo some (many?) tecnicalikies, Hhis orouss i
very similar Jo that Sor e preceeding taeorem
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